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Abstract An optimization problem is defined by an objective function to be maximized
with respect to a set of constraints. To overcome some theoretical and practical difficulties,
the constraint-set is sometimes relaxed and “easier” problems are solved. This led us to study
relaxations providing exactly the same set of optimal solutions. We give a complete charac-
terization of these relaxations and present several examples. While the relaxations introduced
in this paper are not always easy to solve, they may help to prove that some mathematical
programs are equivalent in terms of optimal solutions. An example is given where some of
the constraints of a linear program can be relaxed within a certain limit.

Keywords Convex relaxation · Convex geometry · Sensitivity analysis

1 Introduction

An approach that is commonly taken when dealing with optimization problems consists in
relaxing some constraints and solving easier problems. Lagrangean relaxations [17], linear
relaxations for integer [18,20,22] and convex problems [3,11,14], semidefinite relaxations
[24], convex relaxations [6,7,13,19] are often used to get either optimal or approximate
solutions of the original problem.

Given an optimization problem, a relaxation will be said to be optimality-equivalent if it
has the same set of optimal solutions as the original problem. We will assume that the set
of feasible solutions S of the original problem is convex and the objective function is linear.
Notice that S is not necessarily given in an explicit way. It can be, for example, the convex
hull of the integer solutions of a linear system. Then we are looking for sets T containing the
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convex set S such that optimizing a given objective function over S is equivalent to optimiz-
ing over T . We will give a full characterization of optimality-equivalent relaxations using
some geometric arguments. It is important to notice that the concept of optimality-equivalent
relaxations is defined for a given objective function: if we change the objective function, the
relaxation is no longer optimality-equivalent.

A lot of valuable work was done in different areas to improve the “quality” of relax-
ations. For example, when we deal with linear relaxations, we generally look for deep valid
inequalities. There is also a lot of research related to combinatorial problems where we try to
formulate the problem such that the bound given by the relaxation is “good”. A systematic
study of the polyhedral structure of combinatorial problems allowed the solution of very
large size problems. In some cases, the polyhedron is fully described and the corresponding
optimization problems are solved in polynomial time. Valid inequalities can also be automat-
ically generated in the spirit of the Chvátal–Gomory method [8,12]. Another line of research
consists in lifting the optimization problem in an appropriate space and projecting on the
original one to get tight relaxations [2,15,23].

The set of solutions S can also be a non-polyhedral convex set. Polyhedral relaxations
are then obtained using the subgradients of the convex functions defining S. Several kinds
of cutting plane algorithms are derived depending on how the relaxation is updated [3,4,11,
13,14,19,25].

While some relaxations do not depend on the objective function such as the semidefinite
relaxation of the maximum cut problem [10], most of them directly or indirectly depend on
the objective function. This occurs, for example, when a cutting plane algorithm is used.
It is even known that some hard combinatorial problems become easy for some objective
functions: the longest path problem with negative weights, the lot-sizing problem with the
Wagner–Whitin property [21], the maximum cut problem with negative weights, etc.

The characterization of optimality-equivalent relaxations presented in this paper will also
depend on the objective function.

While the relaxation technique described in the paper does not seem to provide a general
algorithmic tool to solve hard problems, it gives more insight on optimality-equivalent relax-
ations and it helps to prove that some mathematical programs are equivalent. An example is
given where some of the constraints of a linear program can be relaxed within a certain limit.

The rest of the paper is organized as follows. Some notation and simple examples are
provided in Sect. 2. Some preliminary results are presented in Sect. 3. Section 4 is devoted
to the main results of the paper. Then we review more examples and applications in Sect. 5.
Finally, a conclusion with some research directions are presented in Sect. 6.

2 Notation and simple examples

We consider the Euclidean affine space R
n where n ≥ 2 is the dimension of the space. For

(x, y) ∈ R
n × R

n , d(x, y) denotes the Euclidean distance between x and y. Given a vector
(α, λ) ∈ R

n × R, H(α,λ) stands for the hyperplane H(α,λ) = {x ∈ R
n | αt x = λ}. We also

use d(A, B) to denote the distance between two subsets A and B defined by d(A, B) =
inf

x∈A,y∈B
d(x, y). If A and B are closed and one of them is bounded, the infimum is attained.

Consider a convex program of the following kind to be solved:

P

{
max ct x
x ∈ S
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where S is a nonempty compact convex set of R
n . Recall that a subset of R

n is compact if
and only if it is bounded and closed. Notice that this assumption implies that P has a finite
optimal solution. We assume without loss of generality that the norm of c ∈ R

n is equal to
one, i.e., ‖c‖ = 1: when c = 0, there is nothing to optimize.

Given any function f : [0, 2] → R+, let S f denote the set of points x ∈ R
n satisfying all

the inequalities π t x − π0 ≤ f (1 − π t c) where π t x − π0 ≤ 0 is any valid inequality of S
such that ‖π‖ = 1. This implies that S f contains S. Notice that without loss of information
one can focus here only on the inequalities π t x − π0 ≤ 0 such that π0 = max

x∈S
π t x . The

optimization problem corresponding to S f is denoted by Pf .

Pf

{
max ct x
x ∈ S f

Given any function f : [0, 2] → R+, we will write lim inf
ε→0+

f (ε)√
ε

= 0 if for any ε′ > 0

and any k > 0, there exists ε such that 0 < ε ≤ ε′ and f (ε)√
ε

≤ k. Said another way, we say

that lim inf
ε→0+

f (ε)√
ε

= 0 if one can build a sequence (εi )i ∈ N > 0 such that lim
i→∞ εi = 0 and

lim
i→∞

f (εi )√
εi

= 0.

Let us now look at some simple examples. We take n = 2. First, we consider a set S which
is a polytope (under the two hyperplanes represented with dotted lines in Figs. 1 and 2). We
also consider a set T given by T = S f . We take f (ε) = ε for any ε ∈ [0, 2] in Fig. 1, while
f (ε) = √

ε in Fig. 2. Notice that both figures show only what happens around the optimal
solution of P . The set of optimal solutions of P and Pf are clearly the same when f (ε) = ε.
On the other hand, when the set T is defined using the function f (ε) = √

ε, then T contains
more optimal solutions than S.

We do the same with another domain S. Figures 3 and 4 use the unit disk. We take f (ε) = ε

in the first case and f (ε) = √
ε in the second one. One can easily show that the set T is

also a disk when f (ε) = ε. The set of optimal solutions does not change. However, when
f (ε) = √

ε, the set of optimal solutions of Pf contains the whole segment [AB] (Fig. 4).

Fig. 1 S is a polytope and
f (ε) = ε

c

S
T
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Fig. 2 S is a polytope and
f (ε) = √

ε

S

c

T

Fig. 3 S is the unit disk and
f (ε) = ε

S
c

T

While these geometric transformations are interesting on their own, the goal of this paper
is to characterize the relaxations that do not change the set of optimal solutions. The two
previous examples suggest that the function f (ε) = ε provides such kind of relaxations
while f (ε) = √

ε is not a suitable function.

3 Preliminary results

A first straightforward lemma is given below.

Lemma 3.1 Given any function f : [0, 2] → R+, S f is a compact convex set.

Proof Any converging sequence of points (xt )t∈N belonging to S f satisfies all valid inequal-
ities π t x − π0 − f (1 − πc) ≤ 0. By continuity of linear inequalities, the limit will also

123



J Glob Optim (2008) 42:533–547 537

Fig. 4 S is the unit disk and
f (ε) = √

ε

A

B

S c

T

satisfy the same constraints, so it belongs to S f . Convexity of S f is a consequence of the
convexity of linear functions. As S is bounded, for any variable x j ( j ∈ {1, . . . , n}) there
are two numbers α j and β j such that x j ≤ α j and −x j ≤ β j are two valid inequalities for
S. Considering S f , we get x j − α j − f (1 − c j ) ≤ 0 and −x j − β j − f (1 + c j ) ≤ 0. Said
another way, S f is bounded. 	


The previous lemma implies that Pf has optimum solutions (they are attained).
We also give the proof of the next lemma for sake of completeness. It only says that the

support function is continuous.

Lemma 3.2 Let T be any compact set and α be any vector of R
n. Then, lim

σ→α
max
x∈T

σ t x =
max
x∈T

αt x .

Proof Consider xα and xσ in T such that αt xα = max
x∈T

αt x and σ t xσ = max
x∈T

σ t x . Both xα

and xσ exist because T is compact. We can write σ t xσ ≥ σ t xα = (σ t − αt )xα + αt xα . We
also have σ t xσ = (σ t −αt )xσ +αt xσ ≤ (σ t −αt )xσ +αt xα . Combining the two inequalities
and using the fact that T is bounded leads to lim

σ→α
max
x∈T

σ t x = max
x∈T

αt x . 	


Lemma 3.3 Let f : [0, 2] → R+ be a function such that lim inf
ε→0+ f (ε) = 0. Then max

y∈S
ct y =

max
y∈S f

ct y.

Proof lim inf
ε→0+ f (ε) = 0 implies the existence of a sequence (εi )i∈N > 0 such that lim

i→∞ εi = 0

and lim
i→∞ f (εi ) = 0. Since S is compact, one can build a sequence of constraints σ t

i x −
max
y∈S

σ t
i y ≤ 0 such that 1 − σ t

i c = εi and ||σi || = 1. We also have max
y∈S

σ t
i y ≤ max

y∈S f
σ t

i y ≤
max
y∈S

σ t
i y + f (εi ). Taking the limit when i → ∞ and using Lemma 3.2 clearly leads to

max
y∈S

ct y = max
y∈S f

ct y. 	

The next lemma will be used to prove Proposition 4.3.
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Lemma 3.4 Let T be any compact set, then

lim
σ→c

d

(
H(c,max

x∈T
ct x) ∩ H(σ,max

x∈T
σ t x), H(c,max

x∈T
ct x) ∩ T

)
= 0.

Proof Given any sequence (σi )i∈N converging to c, we will build a subsequence for which
the distance mentioned in the Lemma converges to 0. This is clearly enough to prove the
wanted result.

Consider again the points xσi ∈ T such that σ t
i xσi = max

x∈T
σ t

i x . Since T is a compact set

and xσi ∈ T , one can build a converging subsequence of (xσi )i∈N. Then, we can assume that
(xσi )i∈N is a converging sequence (if not, we replace it by a converging subsequence). Let z
denote the limit of the sequence.

We already know from Lemma (3.2) that lim
i→∞ σ

t
i xσi = ct xc. Moreover, since lim

i→∞ σi =
c and lim

i→∞ xσi = z, we can write lim
i→∞ σ

t
i xσi = ct z. As a consequence, z is a point of

H(c,max
x∈T

ct x) ∩ T .

Let yσi be the orthogonal projection of xσi on H(c,max
x∈T

ct x). By definition, yσi −xσi is a vec-

tor proportional to c. Since ct xσi ≤ max
x∈T

ct x = ct yσi , we can write yσi − xσi = ||yσi − xσi ||c.

Moreover, for i sufficiently large, σi is close to c, implying that σ t
i yσi − σ t

i xσi = ||yσi −
xσi ||σ t

i c ≥ 0.
On the other hand, z ∈ T implies that σ t

i z − σ t
i xσi ≤ 0. Said another way, one can find a

point wσi lying on the segment [yσi , z] such that σ t
i wσi − σ t

i xσi = 0 and ctwσi − ct xc = 0.
This means that wσi ∈ H(c,max

x∈T
ct x) ∩ H(σi ,max

x∈T
σ t

i x). We also have

d

(
H(c,max

x∈T
ct x) ∩ H(σi ,max

x∈T
σ t

i x), H(c,max
x∈T

ct x) ∩ T

)
≤ d(wσi , z)

≤ d(yσi , z)

≤ d(xσi , z)

where the last inequality is given by Pythagoras’ theorem.
Since the limit of d(xσi , z) is 0, one can deduce that

lim
i→∞ d

(
H(c,max

x∈T
ct x) ∩ H(σi ,max

x∈T
σ t

i x), H(c,max
x∈T

ct x) ∩ T

)
= 0.

	


4 Main results

We are now ready to present our first important result.

Proposition 4.1 Let f : [0, 2] → R+ be a function such that lim inf
ε→0+

f (ε)√
ε

= 0, then any

optimal solution of Pf belongs to S.

Proof Let x ′ (resp. x∗) stand for an optimal solution of Pf (resp. P). Let z∗ = ct x∗ be the

objective value of an optimal solution of P . Since lim inf
ε→0+

f (ε)√
ε

= 0 implies that lim inf
ε→0+ f (ε) =

0, we deduce by Lemma 3.3 that both x ′ and x∗ belong to the hyperplane H(c,z∗).
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Let us assume that x ′ /∈ S. This means that there exists an hyperplane H(σ,σ0) separating
x ′ from S (‖σ‖ = 1). Let B stand for the point corresponding to the intersection between
H(σ,σ0) and the segment [x ′, x∗]. Let A denote the orthogonal projection of x ′ onto H(σ,σ0).

Let us consider the affine subspace of dimension two containing the points x ′, A and B.
Then we have:

σ t x ′ − σ0 = d(x ′, H(σ,σ0)) = d(x ′, A) = d(x ′, B)sin(θ), (1)

where θ stands for the angle between the vectors
−→
B A and

−→
Bx ′. Notice that the vector

−→
x ′ A

is proportional to σ . We can decompose the vector c into two vectors c1 and c2 such that
c2 is orthogonal to the affine subspace considered above and c1 is the projection of c on the
corresponding vector subspace. We will also use β to denote the angle between c and σ . We
clearly have,

ctσ = cos(β) = ct
1σ = ||c1||cos(θ). (2)

The second equality comes from the fact that the angle between c1 and σ is the same as

the angle between
−→
Bx ′ and

−→
B A. To see this, we only have to remember that both x ′ and x�

belong to H(c,z∗) implying that c is orthogonal to
−→
Bx ′. Consequently, c1 is also orthogonal

to
−→
Bx ′. Combining this with the fact that σ is orthogonal to

−→
B A leads to (2).

Using σ and c, we will build a sequence of valid inequalities σ t
i x − σ0i ≤ 0 that are vio-

lated by x ′ and such that lim
i→∞ σi = c. The assumption lim inf

ε→0+
f (ε)√
ε

= 0 implies the existence

of a sequence (εi )i∈N > 0 such that lim
i→∞ εi = 0 and lim

i→∞
f (εi )√
εi

= 0. Then we can consider

a sequence of constraints σ t
i x − σ0i ≤ 0 such that εi = 1 − σ t

i c and

σi = (1 − αi )σ + αi c

||(1 − αi )σ + αi c|| , (3)

where 0 < αi < 1. The second member σ0i is also defined in the same way: σ0i =
(1−αi )σ0+αi z�

||(1−αi )σ+αi c|| .
All the constraints σ t

i x − σ0i ≤ 0 are clearly valid inequalities since they are the com-
bination of two valid inequalities. These constraints are violated by x ′ (because x ′ satisfies
with equality the constraint ct x ≤ z� and violates the constraint σ t x ≤ σ0). Notice that this
namely implies that f (εi ) 
= 0 which will allow us to consider below the ratio 1

f (εi )
.

It is important to notice that the point B previously defined does not change when we
consider the sequence of constraints σ t

i x −σ0i ≤ 0. In fact, B belongs to all the hyperplanes
H(σi ,σ0 i ). The point A depends on the constraint and will be denoted Ai .

We will use the index i to denote all the points and angles related to the inequalities
σ t

i x − σ0i ≤ 0. As we have lim
i→∞ εi = 0, we can deduce using (2) that lim

i→∞ σi = c,

lim
i→∞βi = 0, lim

i→∞ θi = 0, lim
i→∞ ||c1i || = 1, and lim

i→∞αi = 1.

This way we get for εi close to zero:

σ t
i x ′ − σ0i

f (εi )
= d(x ′, B)sin(θi )

f (1 − cos(βi ))
∼ d(x ′, B)θi

f (1 − (1 − β2
i

2 + o(β3
i )))

∼ d(x ′, B)θi

f (
β2

i
2 + o(β3

i ))

.

From the assumption lim
i→∞

f (εi )√
εi

= 0, we get

σ t
i x ′ − σ0i

f (1 − σ t
i c)

∼ d(x ′, B)
θi

βi

1

o(1)
. (4)
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Fig. 5 Illustration relating to the proof of Proposition 4.1

We need to evaluate the ratio θi
βi

. To do this, we first try to represent the already defined
points and angles on Fig. 5.

Assume that the vectors c, σ and
−−→
x∗x ′ are linearly independent. We consider the points u,

v, yi such that
−→
Bu = c,

−→
Bv = σ , yi ∈ [v, u], −→

Byi and σi are collinear. In other words,
−→
Byi

is defined by
−→
Byi = (1 − αi )σ + αi c where 0 < αi < 1 (see Eq. 3). Let zi be the projection

of u on the plane containing B, x ′ and yi . Thus, we have
−→
Bzi = c1i . The angle between −→uzi

and −→uyi is denoted by ϕi .
Notice that all the points considered here (B, x ′, x�, Ai , yi , zi , u, v) belong to the unique

three dimensional affine space containing B, x ′, u and v.
Using the notation above, when εi is close to 0 (βi close to 0) we get d(u, yi ) ∼ d(u, B)βi

and d(zi , yi ) ∼ d(u, B)θi . Combining the two approximation results leads to d(zi ,yi )
d(u,yi )

∼ θi
βi

.

Moreover, we have sin(ϕi ) = d(zi ,yi )
d(u,yi )

. When εi is close to 0, then ϕi becomes close to the

angle ψ between −→uv and the normal vector to the plane containing u, B and x ′. Recall that
since we are considering the three dimensional (closed) space containing B, x ′, u and v, the
normal vector to the plane containing u, B and x ′ is well defined. In other words, we have

θi

βi
∼ sin(ψ). (5)

Notice that sin(ψ) 
= 0 because −→uv cannot be orthogonal to
−→
Bu (||−→Bu|| = ||−→Bv|| = 1).

Combining the results (4) and (5) leads to

lim
i→∞

σ t
i x ′ − σ0i

f (1 − σ t
i c)

= ∞. (6)
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The same result holds if we assume that the vectors c, σ and
−−→
x∗x ′ are not linearly

independent. Indeed, in this case we have θi = βi .
Let us summarize what we have proved. When we assume that x ′ is not in S, we can build

a sequence of constraints violated by x ′ such that lim
i→∞

σ t
i x ′−σ0 i

f (1−σ t
i c)

= ∞. But this is not possible

since x ′ ∈ S f . Then, our assumption is wrong and one can deduce that x ′ ∈ S. 	

Corollary 4.2 Let f : [0, 2] → R+ be a function such that lim inf

ε→0+
f (ε)√
ε

= 0, and T be a set

such that S ⊆ T ⊆ S f . Then any point of T maximizing ct x belongs to S.

We can now prove the second important result.

Proposition 4.3 Let T be a compact set containing S such that any point x of T maximizing
ct x lies in S. Then there exists a function f : [0, 2] → R+ such that lim inf

ε→0+
f (ε)√
ε

= 0 and

T ⊆ S f .

Proof Let us define the function f as follows:

f (ε) = max
1−σ t c=ε,||σ ||=1

(
max
x∈T

σ t x − max
x∈S

σ t x

)
.

Notice that f is well defined because the set {σ ∈ R
n, such that 1 − σ t c = ε, ||σ || = 1}

is a compact set and the function σ → max
x∈T

σ t x − max
x∈S

σ t x is continuous (by Lemma 3.2).

For each ε ∈ [0, 2] there exists at least one σε such that 1 − σ t
εc = ε, ||σε || = 1 and

f (ε) = max
x∈T

σ t
ε x − max

x∈S
σ t
ε x .

Suppose that the function f defined above does not satisfy the requirements. This means
that there exists ε′ > 0 and k > 0 such that f (ε) ≥ k

√
ε for any ε ≤ ε′. For each

ε ≤ ε′, we consider the set H(c,max
x∈T

ct x) ∩ H(σε ,max
x∈T

σ t
ε x). Using the fact that lim

ε→0
σε = c, one

can deduce from Lemma 3.4 that lim
ε→0

d

(
H(c,max

x∈T
ct x) ∩ H(σε ,max

x∈T
σ t
ε x), H(c,max

x∈T
ct x) ∩ T

)
= 0.

This

implies that one can find ε′′ such that d

(
H(c,max

x∈T
ct x) ∩ H(σε ,max

x∈T
σ t
ε x), H(c,max

x∈T
ct x) ∩ T

)
<

k
2
√

2
for any 0 < ε ≤ ε′′. We can of course take ε′′ = min{ε′, ε′′} to simultaneously

have f (ε) ≥ k
√
ε and d

(
H(c,max

x∈T
ct x) ∩ H(σε ,max

x∈T
σ t
ε x), H(c,max

x∈T
ct x) ∩ T

)
< k

2
√

2
for any

0 < ε ≤ ε′′. Let yε ∈ H(c,max
x∈T

ct x) ∩ H(σε ,max
x∈T

σ t
ε x) and y0 ∈ H(c,max

x∈T
ct x) ∩ T be such that

d(yε, y0) <
k

2
√

2
for ε ≤ ε′′. Since yε ∈ H(σε ,max

x∈T
σ t
ε x) we can write σ t

ε yε − max
x∈T

σ t
ε x = 0.

By definition of σε we have max
x∈T

σ t
ε x = f (ε) + max

x∈S
σ t
ε x . This implies that σ t

ε (yε − y0) +
σ t
ε y0 − max

x∈S
σ t
ε x = f (ε). By our assumption that any point x of T maximizing ct x lies in

S, we know that H(c,max
x∈T

ct x) ∩ T = H(c,max
x∈S

ct x) ∩ S. Consequently, we have y0 ∈ S and

σ t
ε y0 − max

x∈S
σ t
ε x ≤ 0. In other words, the following inequalities hold for 0 < ε ≤ ε′′:

k
√
ε ≤ f (ε) ≤ σ t

ε (yε − y0). (7)

Let θε be the angle between σε and c. Then we have σε = cos(θε)c + −→zε where −→zε is a
vector orthogonal to c. As the norm of σε is 1, we should have ||−→zε || = |sin(θε)|. Moreover,
both y0 and yε belong to H(c,max

x∈T
ct x). Consequently, we have

123



542 J Glob Optim (2008) 42:533–547

σ t
ε (yε − y0) = (

cos(θε)c + −→zε
)t
(yε − y0)

= −→zε t
(yε − y0)

≤ ||−→zε ||d(y0, yε)

≤ | sin(θε)| k

2
√

2
(8)

Combining (7) and (8) and using the fact that 1 − σ t
εc = ε, we get

√
1 − cos(θε) ≤

|sin(θε)| 1
2
√

2
which is clearly impossible for θε 
= 0 close to 0. 	


Combination of Corollary 4.2 and Proposition 4.3 obviously leads to the following the-
orem (the main contribution of the paper). Recall that S is a nonempty convex compact
set.

Theorem 4.4 Let T be a compact set containing S, then the following properties are equivalent:

(i) any point x of T maximizing ct x lies in S
(ii) there exists a function f : [0, 2] → R+ such that lim inf

ε→0+
f (ε)√
ε

= 0 and T ⊆ S f .

Suppose now that we are dealing with a multi-objective problem where we have r objec-
tive functions defined by the vectors c1, . . ., cr . We look for relaxations that do not change
the optimal solutions related to any objective function. We assume that ||ci || = 1 for any
i ∈ {1, . . . , r}. Using the previous theorem, we can deduce what follows.

Corollary 4.5 Let T be a compact set containing S, then the following properties are
equivalent:

(i) any point x of T maximizing ct
i x, i ∈ {1, . . . , r}, lies in S

(ii) there exist r functions fi : [0, 2] → R+, i ∈ {1, . . . , r} such that lim inf
ε→0+

fi (ε)√
ε

= 0

and T ⊆ S′ = {y ∈ R
n, π t y − π0 ≤ min

i=1,...,r
fi (1 − π t ci ), ||π || = 1, π t x − π0 ≤

0 valid for S}.
Proof Theorem 4.4 tells us that condition (i) is equivalent to T ⊆ S f1 ∩ . . . ∩ S fr . This
directly leads to condition (ii). 	

Remarks

• Theorem 4.4 gave necessary and sufficient conditions to get a relaxation without chang-
ing the set of optimal solutions. We know that this holds if we take T = S f where

lim inf
ε→0+

f (ε)√
ε

= 0. However, Theorem 4.4 does not say anything about a set T = S f

where f is a function not satisfying the requirement above. In fact, one can build a func-
tion f such that lim inf

ε→0+
f (ε)√
ε
> 0 and the set T = S f contains exactly the same set

of optimal solutions as S. In other words, it is possible to have two functions f and
g such that lim inf

ε→0+
f (ε)√
ε
> 0, lim inf

ε→0+
g(ε)√
ε

= 0 and S f ⊆ Sg . An example is given by

S = {(a, b) ∈ R
2, a ≥ 0, b ≥ 0, a +b ≤ 1} with f (2) = 0, f (1− 1√

2
) = 0 and f (ε) = 1

otherwise. The objective function is defined by c = (−1/
√

2,−1/
√

2)t . We clearly have
lim inf
ε→0+

f (ε)√
ε
> 0 and S f ⊆ S0 (S0 = S is given by g = 0).

• The set S considered in the paper is bounded. One may ask whether this condition is neces-
sary to prove Theorem 4.4. Let us take S = {y ∈ R

n, ct y = z�}. The only non-dominated
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valid inequalities for S (up to multiplicative factor) are ct x ≤ z� and −ct x ≤ −z�. Let us
define f by f (0) = f (2) = 1 and f (ε) = 0 elsewhere. Although f satisfies the second
requirement of Theorem 4.4, the set S f defined by {y ∈ R

n,−1 ≤ ct y − z� ≤ 1} has a
different set of optimal solutions than S.
In fact, Theorem 4.4 is valid even if we assume that S is a closed convex set and S ∩ H(c,z�)
is bounded, but the proofs are slightly more complicated.

5 More examples

More elaborate examples will be presented in this section. Theorem 4.4 is used to deduce the
equivalence (in terms of optimal solutions) between different mathematical programs. Notice
that we generally need a full description of all valid inequalities. While this is not always
possible, there are some cases where we have such descriptions. This is straightforward at
least for polyhedrons and ellipsoids. We will focus on polyhedrons in this section. It is clear
that the relaxations defined in this paper are generally not useful to solve a linear program.
However, these relaxations (at least in the linear case) lead to more “complicated” mathe-
matical programs that are equivalent to the initial problems. Then if such a “complicated”
program is given, we know that it can be replaced by a simple linear program. An application
is given at the end of this section.

We assume here that P is a linear problem denoted L P

L P

⎧⎨
⎩

max ct x
Ax − b ≤ 0
x ∈ R

n
(9)

where A is a matrix with n columns and m rows. Recall that ||c|| = 1. We also assume that
the set of feasible solutions is a nonempty bounded set (a nonempty polytope).

The relaxation L P f where f (x) = λx (λ ≥ 0) is given by

L P f

⎧⎨
⎩

max ct x
αt (Ax − b) ≤ λ(1 − αt Ac); ∀α ∈ R

m, α ≥ 0, ||αt A|| = 1
x ∈ R

n

The equality constraint ||αt A|| = 1 can be replaced by ||αt A|| ≤ 1 without any change
in the relaxation. Let us first consider that αt A = 0. Then αt (Ax − b) ≤ 0 is valid for S.
This leads to αt b ≥ 0 which implies that the inequality αt (Ax − b) ≤ λ(1 − αt Ac) is valid
for S f . Suppose now that αt A 
= 0 and ||αt A|| < 1. By the definition of S f , the constraint
β t (Ax − b) ≤ λ(1 − β t Ac) is valid where β = α

||αt A|| . Given x ∈ S f , we have

αt (Ax − b) = ||αt A||β t (Ax − b)

≤ ||αt A||λ(1 − β t Ac)

= ||αt A||λ− λαt Ac

≤ λ− λαt Ac

= λ(1 − αt Ac).
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Said another way, αt (Ax − b) ≤ λ(1 − αt Ac) is valid even if αt A 
= 0 and ||αt A|| < 1.
L Pf becomes

L P f

⎧⎨
⎩

max ct x(
xt At − bt + λct At

)
α ≤ λ; ∀α ∈ R

m, α ≥ 0, ||αt A|| ≤ 1
x ∈ R

n

For any x satisfying all the constraints of L P f , we use yt to denote xt At − bt + λct At .
This means that we should have ytα ≤ λ for any α such that ||Atα|| ≤ 1 and α ≥ 0.

Said another way, the following inequality holds

− λ ≤ min
α∈R

m+,||Atα||≤1
−ytα. (10)

Moreover, the minimization problem used in (10) and written below is a second-order
cone program (see, [1,7] for results about second-order cone programming).⎧⎨

⎩
min −ytα

||Atα|| ≤ 1
α ∈ R

m+
The dual of this second-order cone program is given by:⎧⎪⎪⎨

⎪⎪⎩

max −v
Au + y ≤ 0
||u|| ≤ v

u ∈ R
n, v ∈ R

Slater’s conditions are clearly satisfied, so strong duality holds and we can replace Eq. 10
by

− λ ≤ max
u∈Rn ,v∈R,Au+y≤0,||u||≤v−v. (11)

(11) is equivalent to the existence of u ∈ R
n and v ∈ R such that Au + y ≤ 0, ||u|| ≤ v

and −λ ≤ −v. It is easy to see that v can be eliminated and the last two inequalities can be
replaced by ||u|| ≤ λ.

Dividing u by λ and replacing yt by xt At −bt +λct At , we get a new formulation for LPf

LPf

⎧⎪⎪⎨
⎪⎪⎩

max ct x
Ax − b + λ(Ac − Au) ≤ 0
||u|| ≤ 1
u ∈ R

n, x ∈ R
n

(12)

Theorem 4.4 tells us that the problem L P defined in (9) and the problem L Pf reformu-
lated in (12) have exactly the same set of optimal solutions. Notice that problem (12) is a
second-order cone program.

The equivalence between (9) and (12) can also be shown using linear programming dual-
ity. In fact, assuming that the linear program (9) has a finite optimal solution, it is easy to
prove by duality for any fixed u 
= c ∈ R

n , ||u|| ≤ 1, and λ > 0 the following inequalities:

max
Ax−b+λ(Ac−Au)≤0

ct x < max
Ax≤b

ct x < max
Ax−b+λ(Au−Ac)≤0

ct x . (13)

In fact, given a vector x maximizing ct x with respect to constraints Ax −b+λ(Ac− Au) ≤ 0,
we can build a solution x ′ = x + λ(c − u) satisfying constraints Ax ′ − b ≤ 0. We clearly
have ct x ′ > ct x which proves the first inequality of (13).
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It is also easy to see that for any vector δ ∈ R
n for which max

Ax≤b+Aδ
ct x < max

Ax≤b
ct x there

exists λ > 0 and u 
= c ∈ R
n , ||u|| ≤ 1 such that δ = λ(u − c). A similar result holds

if max
Ax≤b+Aδ

ct x > max
Ax≤b

ct x : we should have δ = λ(c − u). We can also show in the same

way that max
Ax≤b+Aδ

ct x = max
Ax≤b

ct x if and only if δt c = 0. These straightforward results

may be useful in the context of sensitivity analysis. They are summarized in the following
proposition.

Proposition 5.1 Assuming that max
Ax≤b

ct x is finite and ||c|| = 1, then we have:

(i) max
Ax≤b+Aδ

ct x < max
Ax≤b

ct x holds if and only if there exists λ > 0 and u 
= c ∈ R
n,

||u|| ≤ 1 such that δ = λ(u − c); i.e., δt c < 0 .
(ii) max

Ax≤b+Aδ
ct x > max

Ax≤b
ct x holds if and only if there exists λ > 0 and u 
= c ∈ R

n,

||u|| ≤ 1 such that δ = λ(c − u); i.e., δt c > 0.
(iii) max

Ax≤b+Aδ
ct x = max

Ax≤b
ct x holds if and only if δt c = 0.

We give below a possible application of the equivalence between problems (9) and (12).
Consider a linear problem with two sets of constraints: a first set that should be respected
by x and a second set where a limited violation can be accepted. This can be expressed by
writing that there is a vector u whose norm is small (||u|| ≤ λ) such that x + u satisfies the
second set of constraints. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max ct x
Dx ≤ e
A(x + u) ≤ b
||u|| ≤ λ

u ∈ R
n, x ∈ R

n

(14)

Relaxing the first set of constraints and using φ to denote the Lagrange multipliers, the
dual problem can be written as below:

min
φ≥0

(
φt e + max

A(x+u)≤b,||u||≤λ(c − Dtφ)t x

)
. (15)

The inner maximization problem has the same form as problem (12). Then we can deduce
that if the set Ax ≤ b is bounded, the inner problem is equivalent to

max
||c−Dtφ||Ax≤||c−Dtφ||b+λA(c−Dtφ)

(c − Dtφ)t x . (16)

In other words, the convex problem (14) can be handled (under constraint qualification)
by solving a series of linear programs. Several approaches can be considered here. One can
use a classical subgradient optimization algorithm where φ is moved in the direction of the
current subgradient given by Dx − e. We can also use a cutting plane algorithm where linear
cuts are given by the subgradients obtained when the inner maximization problems (16) are
solved. A linear approximation of the dual function is then improved at each iteration. The
next φ can be computed in different ways (a Kelly’s algorithm [14], a bundle type method
[16], central cutting plane algorithms [11,9,25], a multiple-points separation algorithm [3],
an improvement of Kelly’s algorithm [4], etc.).
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Remarks

• A similar optimality-equivalent formulation can be derived if we use the function f (ε) =
λε2, where λ ≥ 0. We prove in [5] that program (17) is optimality-equivalent to program
(9).

L P f

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max ct x
Ax − b ≤ (2λAcct At + 2vAAt )w − 2λAc
wt (λAcct At + vAAt )w − λ+ v ≤ 0
v ∈ R, v ≥ 0
w ∈ R

m, x ∈ R
n

(17)

• For any function f such that lim inf
ε→0+

f (ε)√
ε

= 0, we know that any point x maximizing ct x

and satisfying
σ t x−max

y∈S
σ t y

f (1−σ t c) ≤ 1 (when f (1 − σ t c) 
= 0) for all vectors σ is necessarily
an optimal solution. This may provide a new kind of rules to generate cuts: instead of
generating the most violated cut, one can look for a cut maximizing the violation divided
by f (1−σ t c). The same can be done when we are dealing with column generation. New
pricing rules can be tried for example to choose the next vertex to be visited when the
simplex algorithm is applied. We only have to normalize the right-hand size vector of the
linear problem and consider the angle between this vector and the column to be generated.
Computational experiments are needed to study the performances of this approach.

• We can also try to generate either cuts or columns maximizing σ t x − max
y∈S

σ t y − f

(1 − σ t c). If we take f (ε) = λε, then the separation problem becomes

max
σ

(
σ t (x + λc)− max

y∈S
σ t y

)
. Said another way, instead of separating x , we separate

x + λc (more precisely, we compute the most violated inequality by x + λc). Notice that
this seems to be quite natural: when λ � 1, a vector σ defining an inequality violated
by x + λc will be close to c. Computational experiments are again needed to study the
performances of this approach.

6 Conclusion and further research

Given a linear objective function and a convex set of feasible solutions, we have a full char-
acterization of the relaxations that do not modify the set of optimal solutions. It turns out that
the angle between the objective vector c and the vector σ defining a valid inequality has some
importance. Roughly speaking, when this angle becomes closer to 0, there exists a sequence
of valid inequalities that are relaxed in a limited way (in the sense of Theorem 4.4). We can
even skip all the valid inequalities for which the angle between σ and c is larger than any
given small number.

The general form of relaxations given in this paper may be useful to simplify calculation.
Given a problem similar to either (12) or (17), it can be replaced by a linear program without
changing the set of optimal solutions. This was used in Sect. 5 to solve a linear problem
where some constraints can be violated within a certain limit. Notice that the model (14) is
interesting in its own right since it introduces a flexibility in a simple way.

A promising research direction consists in looking for some other transformations of
“difficult” problems into simpler ones.

123



J Glob Optim (2008) 42:533–547 547

Some connections with sensitivity analysis were pointed out in Proposition 5.1. We also
mentioned some potential applications in the context of both cut and column generation.
A deeper study and computational experiments are needed to evaluate the performances of
this approach.
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